
Mike Anderson
(robot_maker12@verizon.net)

Herndon High School

FRC Team #116

C/C++ and Java Installation

For 2019 FRC Teams

FRC C++-Introduction-2 Ε∆- FRC Team #116

What We’ll Talk About

� Goals

� The development environment

� Talking to the RoboRIO

� Making it move

� Resources

� Summary

FRC C++-Introduction-3 Ε∆- FRC Team #116

Goals

� The goal of this presentation is to help you
understand how to prepare your development
environment for use with C/C++ and Java

� We clearly can’t explain all of the aspects
because we have limited time

� But, you should leave here with a better
understanding of the process

� We will be talking about the set up rather than
the languages themselves

� The WPILib is equivalent between the
environments

FRC C++-Introduction-4 Ε∆- FRC Team #116

Warning: Beta Code…

� What you will see is the 2019

Beta software that we’ve been

working with over the past

couple of months

� Some things are likely to change, but it’s

pretty feature complete at this point

� There were quite a bit of head scratching while

we were working with getting things running

� The approach is quite a bit different than in years

past

FRC C++-Introduction-5 Ε∆- FRC Team #116

Why C/C++?

� C/C++ is a standard in embedded systems
programming for over 30 years
� It’s still the most predominant language in embedded

Linux, the IoT and the real-time operating system (RTOS)
world
• This gives your team valuable real-world experience

� It’s compiled to native machine code
� No virtual machine interpreters

• No pausing due to garbage collection

� It’s fast

� It’s the native language of the RoboRIO’s Linux-based
operating system
� The environment is written in C and Assembler
� You get easy, direct access to the underlying O/S

� C++ is object oriented
� Full support from WPILib

FRC C++-Introduction-6 Ε∆- FRC Team #116

Why Not C/C++?

� C/C++ is compiled
� This adds complexity to the build

� C/C++ is textual
� There are no cutesy GUIs with lots of obscure

symbols and squiggly lines ☺

� There is no VM to catch your mistakes
� The syntax is similar to Java

• Java was derived from C++

• Java VM is written in C/C++

� C/C++ has pointers
� Objects can be referenced in many different ways

� This concept can be troublesome for some
developers

FRC C++-Introduction-7 Ε∆- FRC Team #116

Why Java?

� Java has wide support in the industry
� Object-oriented approach with lots of reference material

� Java is the language used on the AP exams
� Used in many computer science classes

� Java is a byte-code interpreted language
� The use of the Virtual Machine (VM) allows for many

dynamic language features

� The VM will help catch some common memory
mistakes

� The version of Java used on the RoboRIO is version
11 from Oracle

� WPILib is actually written in Java and then translated
to C++

FRC C++-Introduction-8 Ε∆- FRC Team #116

Why Not Java?

� Java is interpreted
� Performance is lower than C/C++

� Java is also textual like C++
� But, Java can be written using either imperative or

declarative programming styles

� The version of Java on the RoboRIO is not
optimized for use in control systems
� The version is actually targeted at business

applications

� Garbage collection cycle will cause the robot to
hesitate during the mark-and-sweep cycle
� Given the length of our matches, this should not be a

problem

FRC C++-Introduction-9 Ε∆- FRC Team #116

Top 20 Languages – Dec 2018

� LabVIEW

was #35 on

this list

FRC C++-Introduction-10 Ε∆- FRC Team #116

Some Useful Info…

� The RoboRIO runs Linux
� SSH server is available

• Use Putty on Windows to get to SSH

• shell

� File transfers from IDE use SCP

� Addressing is via mDNS
� roborio-<team #>-FRC.local

� The Web server on the RoboRIO
is being redesigned at this time
so we don’t quite know what it
will look like yet
� However, last year’s requirement for Microsoft Silverlight

seems to be gone ☺

� Do not delete “admin” account
� All program transfers require it

FRC C++-Introduction-11 Ε∆- FRC Team #116

The Development Environment

� The FIRST-supported development platform for
C/C++ and Java is Microsoft Visual Studio Code
tool
� Available for Windows, MacOS and Linux

� The compiler is the open-source GCC 6.3 compiler
• Supports C++11 extensions

� The C compiler is actually a cross-compiler
� We are building on an x86 for an ARM-based system

• Again, this is a standard approach for commercial,
embedded development

� For Java, the build system will run the Java
source code through the Oracle JDK to produce
Java bytecode

FRC C++-Introduction-12 Ε∆- FRC Team #116

Development Environment #2

� The installation tool will install the Oracle JDK

� And, install VSCode if you select that option

� The build environment is the GradleRIO plug-

in from Github

� https://github.com/wpilibsuite/GradleRIO

� The WPILib VSCode plug-in will have all of

the tools needed to build and deploy code to

the robot

FRC C++-Introduction-13 Ε∆- FRC Team #116

Install National Instruments Update

� It’s probably best if you uninstall previous

versions

� Delete the <user>/wpilib directory as well

� It will take at least 10-20 minutes to install

• Longer if you need to uninstall the previous version

� This will also install the FRC Driver Station

application

� This will also install the RoboRIO imaging tool

and the latest firmware release

� The system will reboot after installation

FRC C++-Introduction-14 Ε∆- FRC Team #116

2019 Driver Station

FRC C++-Introduction-15 Ε∆- FRC Team #116

Getting Your RoboRIO Ready

� Before you can start
development, you’ll need
to make sure that your
RoboRIO has the proper
operating system
image on it

� This is accomplished
using the RoboRIO imaging
tool or it can be done through LabVIEW

� The RoboRio imaging tool will automatically
install Java on the the RoboRio

FRC C++-Introduction-16 Ε∆- FRC Team #116

Update the RoboRIO

FRC C++-Introduction-17 Ε∆- FRC Team #116

Launch the WPILib/tools Install

� Unlike last year, the WPILib tools are

extracted from a separate archive

� ~ 3.25 GBs for the zipped download

� We’ll look at the Windows installation, but

there are install steps for both MacOS and

Linux as well

FRC C++-Introduction-18 Ε∆- FRC Team #116

Installation of Visual Studio Code

� In theory, you should be able to use an
existing VSCode installation

� That didn’t work too well in the Beta, so we opted
to allow the installation tool to install VSCode for
us

� The installation will take about 10 minutes

� There are still some manual settings that you’ll
need to do with search paths for the JDK and the
JAVA_HOME environment variable
• Requires that you run a script to update these things

� Presumably, these things will be taken care of by
kickoff

FRC C++-Introduction-19 Ε∆- FRC Team #116

Installing WPILib/VSCode

FRC C++-Introduction-20 Ε∆- FRC Team #116

The VSCode with WPILib Extension

FRC C++-Introduction-21 Ε∆- FRC Team #116

Creating a Project #1

FRC C++-Introduction-22 Ε∆- FRC Team #116

Creating a Project #2

FRC C++-Introduction-23 Ε∆- FRC Team #116

Resulting Project

FRC C++-Introduction-24 Ε∆- FRC Team #116

Build and Deploy

FRC C++-Introduction-25 Ε∆- FRC Team #116

Install the Third-Party Libraries

� The CTRE and Kauaii Labs libraries are unbundled
from the WPILib development environment
� You will need to install these libraries separately into the

VSCode workspace

� CAN bus is a feature now of several FRC-legal motor
controllers

� For CTRE motor controllers, you will need to install the
CTRE Phoenix framework onto your platform
� The Phoenix Diagnostics application will enable you to

update your CAN firmware for the PDP, PCM, Talon SRX
and Victor SPX devices

� You’ll need to add the libraries and header files to the
search path of your project using the VSCode external
library mechanism

FRC C++-Introduction-26 Ε∆- FRC Team #116

Configure CAN Bus (CTRE)

FRC C++-Introduction-27 Ε∆- FRC Team #116

Install 3rd-Party Library into Your Project

� Before you can use the 3rd-party libraries,

you’ll need to import them into your project

FRC C++-Introduction-28 Ε∆- FRC Team #116

3rd-Party #2

� Select the “Install new libraries (offline)” and

then select the library you want to install

FRC C++-Introduction-29 Ε∆- FRC Team #116

3rd-Party #3

� Once the library is installed in your project,

you can start using the features it provides

� You’ll need to make sure you’ve got the

header files or imports listed

� Or, the build will fail miserably

� Once built, you can deploy the 3rd-party

goodness to the robot

FRC C++-Introduction-30 Ε∆- FRC Team #116

Example Java Robot Program

FRC C++-Introduction-31 Ε∆- FRC Team #116

Resources

� Chief Delphi
�http://www.chiefdelphi.com

� FIRST forums
�http://forums.usfirst.org

� NI Community Forums
�http://ni.com/FIRST

� WPI / FIRST NSF Community site (ThinkTank)

� These sites are monitored by members of:
�WPI
�NI
�FIRST

� All source code available for team<->team
assistance

� Phone support through NI
�866-511-6285 (1PM-7PM CST, M-F) ?

FRC C++-Introduction-32 Ε∆- FRC Team #116

Summary

� C/C++ can be very challenging to new developers
� C/C++ is similar enough to Java that Java developers can

adapt to it quickly
• However, pointers will require some explaining

� Performance and fine-grain control are the biggest advantages
to using C/C++

� Java has a lot of support within the FIRST community and
many school systems
� Being on the AP CS exam encourages schools to teach it

� Java is also used in the new FTC development environment
� Although the Java VM is slightly different for Android

� WPILib class libraries have equivalent capability between
C++ and Java versions

� Java and C++ are syntactically very similar
� You could start with one and then switch without too much

trouble

