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In [23]: # Note: Before starting the slideshow, make sure you run this code as it

# provides helper functions that the other slides need...

#

# Other than that, you can ignore this content as it won't show up in the slideshow.

#

# It's a helper function that makes it easier to show OpenCV images directly

# in the notebook environment. When using OpenCV locally, you'll want to use

# `cv2.imshow(name, img)` instead.

import numpy as np

import cv2

import math

# Notebook setup + convenience functions

%matplotlib inline

import matplotlib.pyplot as plt

def force_bgr(img):

'''Forces image to 3-channel representation if grayscale'''

if len(img.shape) == 2 or img.shape[2] == 1:

return cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

return img

def imshow(*args):

'''Helper function to show images, because matplotlib and OpenCV aren't a perfect match'''

fig = plt.figure()

for i, img in enumerate(args):

fig.add_subplot(1,len(args),i+1)

plt.imshow(cv2.cvtColor(force_bgr(img), cv2.COLOR_BGR2RGB))

def blur(src, radius):

ksize = int(2 * round(radius) + 1)

return cv2.blur(src, (ksize, ksize))

#
Image processing using
##
OpenCV + Python
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1 Agenda

• Why OpenCV + Python?
• Image filtering demo
• pynetworktables

2 Image processing

• FRC Teams do it a lot of ways

– NIVision (LabVIEW)
– GRIP (Uses OpenCV as engine)
– OpenCV (various custom stuff)

• We’re going to talk about OpenCV

3 Why OpenCV?

• Originally developed by Intel
• It has thousands of image processing related algorithms and functions available
• Highly optimized and reliable
• Has building blocks that fit together
• Lets you do complex image processing without needing to understand the math
• If you understand the math, it helps!

4 Why OpenCV?

• Bindings for multiple languages

– C/C++
– Java
– Python

• Multiple platforms supported

– Windows
– Linux
– OSX
– Android

• Oh, and it’s FREE!
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5 What OpenCV Provides

• Image I/O:

– Read/Write images from disk
– Use native OS functionality to interface with cameras

• Image Segmentation

– Edge finding
– Contour detection
– Thresholding

6 What OpenCV Provides

• Face detection
• Motion tracking
• Stereo vision support
• Support for GPU acceleration
• Machine learning operations

– Classifiers
– Neural networks

7 What OpenCV Provides

• Distributed with lots of useful samples that you can use to figure out how OpenCV works

– Face detection
– Edge finding
– Histograms
– Square finder

Lots and lots and lots of stuff. . .

8 Why Python + OpenCV?

• Python is really easy to learn and use

– Simple syntax
– Rapid prototyping

• Most of the compute intensive work is implemented in C/C++

– Python is just glue, realtime operation is possible

• NumPy is awesome

– Manipulating image data is trivial compared to other OpenCV bindings (Java, C++)

#
Time to CODE!
Go to http://goo.gl/nB0NCG
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9 About this environment

http://goo.gl/nB0NCG

• It’s a Jupyter Notebook (formerly IPython Notebook)

– This slideshow uses Jupyter too!

• It allows you to mix text and executable code in a webpage
• You execute each cell using SHIFT-ENTER

10 Hello World!

• Click the cell with the following text, and press SHIFT-ENTER

In [24]: print("Hello class")

Hello class

11 Next Steps

• Execute the helper code

• The next cell tells you about the images available in your environment

In [25]: %ls images

1ftH3ftD2Angle0Brightness.jpg* 2016-cmp-5.jpg

2013-f0.png 2016-dcmp1.jpg

2013-p0.png 2016-dcmp2.jpg

2013-p1.png 2016-dcmp3.jpg

2014-f0.png 2016-p0.jpg

2016-cmp-0.jpg 2016-p1.jpg

2016-cmp-1.jpg 2016-p2.jpg

2016-cmp-3.jpg 2016-p3.jpg

2016-cmp-4.jpg

12 Hello image!

• Let’s load an image and show it

In [26]: # Change this to load different images

img = cv2.imread('images/2016-cmp-5.jpg')

imshow(img)
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13 Hello image!

• You can show multiple images next to each other

In [5]: imshow(img, img)

14 OpenCV Image Basics

• Images are stored as multidimensional arrays
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– Color images have 3 dimensions: height, width, channel

• Each pixel is a number stored in the array
• Numpy array notation allows you to do operations on individual pixels or ranges of pixels

In [6]: img[50, 150, :] # Access a single pixel,

Out[6]: array([ 4, 21, 0], dtype=uint8)

In [7]: x = img[24:42, 42:100, :] # Access a range of pixels

15 OpenCV Image Basics

• Color is represented by storing combinations of Red, Blue, and Green pixels in separate
channels

– OpenCV uses BGR representation, not RGB

• The amount of each individual color is represented in the individual channel

– ‘dark’ is zero, ‘bright’ is 255

• Combine the channels to represent a color

– Green = RGB( 0, 255, 0 )
– Deep Pink = RGB( 255, 20, 147 )

16 OpenCV Image Basics

• Using numpy we can easily fill an image with a single color

In [8]: # define image with height=240, width=320, 3 channels

shape = (240, 320, 3)

pink_img = np.empty(shape, dtype=np.uint8)

# Fill every pixel with a single color

pink_img[:] = (147, 20, 255)

imshow(pink_img)
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17 Practical Example

• 2016 FIRST Stronghold: find targets that are surrounded by retroreflective tape, and shoot
boulders into them

• 2017 FIRST Steamworks: use two targets to align to gear holder on the ship

18 Practical Example

• Finding gray tape at a distance isn’t particularly easy

– Key part of image processing is removing as much non-essential information from im-
age

• We can do better!

19 Retroreflective Tape

• It has a useful property -- it reflects light directly back at the source
• What can we do with this property?

• Shine bright LEDs at the target and the tape reflects that color back to the camera

– Many teams have found that green light works best

• Reduce exposure of camera so only bright light sources are seen
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20 A note about exposure

• Webcams support setting the exposure manually (yay)
• Some cameras only allow particular exposure settings

– The lifecam is one of them

• OpenCV has bugs, it doesn’t set the exposure properly
• Here’s a workaround that works on linux:

v4l2-ctl -d /dev/video0 -c exposure_auto=1 -c exposure_absolute=10

21 Retroreflective Tape

In [9]: img1 = cv2.imread('images/2016-p0.jpg')

img2 = cv2.imread('images/2016-p1.jpg')

imshow(img1)

imshow(img2)
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22 Practical Example

Processing steps to find targets:

• Isolate the green portions of the image
• Analyze the green portions to determine targets

Note: There are a lot of ways to go about this, I’m just showing you one way

23 Blurring the Image

• Get rid of small artifacts (noise)
• Makes the target a little more complete

– Easier for thresholding and contour finding

In [10]: blurred = blur(img2, 2)

imshow(blurred)
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24 Identify the green

• What is “green” anyways?

– This is green. This is also green.

• To a computer, green is really a range of colors
• An object’s color changes depending on lighting conditions
• We can transform the image to identify colors independent of lighting conditions

25 Identify the green

• Convert the image from RGB to HSV

– Hue: the color
– Saturation: Colorfulness
– Value: Brightness

In [11]: hsv = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)

imshow(img2)

imshow(hsv)
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26 Identify the green

That doesn’t show why HSV is useful. Let’s look at the individual channels instead.
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In [12]: h, s, v = cv2.split(hsv)

imshow(h, s, v)

27 Identify the green

• Green is a range of values present in the image
• ‘Threshold’ the image to get rid of the colors that we don’t care about
• Lots of ways to do this

– Manually specify values
– Automated methods

28 Identify the green

cv2.inRange can threshold an image given two ranges of pixels. * Wanted values are converted to
255 * Unwanted values are now 0

In [13]: lower = np.array([0, 145, 80])

upper = np.array([255, 255, 255])

filtered = cv2.inRange(hsv, lower, upper)

imshow(img2, filtered)
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29 Identify the green

Sometimes, you end up with holes in your output

In [14]: img3 = cv2.imread('images/2013-f0.png')

hsv3 = cv2.cvtColor(img3, cv2.COLOR_BGR2HSV)

# Thresholds are different because different camera/lighting

lower3 = np.array([30, 188, 16])

upper3 = np.array([75, 255, 255])

filtered3 = cv2.inRange(hsv3, lower3, upper3)

imshow(filtered3)

30 Identify the green

• We can use a morphological operation to fill in the holes

– Various types of morphology operations available

• They modify a pixel based on the values of its neighboring pixels

– The one we use to fill in holes is a “closing” operation

In [15]: kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2), anchor=(1,1))

output = cv2.morphologyEx(filtered3, cv2.MORPH_CLOSE, kernel,

iterations=3)

imshow(output)
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31 Identifying Targets

Use findContours() to find regions of interest * Returns a list of points bounding each separate
blob in the image (called a contour) * Also returns a hierarchy so you can determine whether a
contour is entirely inside another contour

In [16]: image, contours, hierarchy = cv2.findContours(output,

cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

32 Identifying Targets

If you want to see what it found, you can draw the found contours.

In [17]: dst = np.zeros(shape=img3.shape, dtype=img3.dtype)

cv2.drawContours(dst, contours, -1, (0, 255, 255), 1)

imshow(dst)

#print(contours[0])
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33 Identifying Targets

• As you can see, contours aren’t the whole story

34 Identifying Targets

• Contour analysis

– Discard non-convex contours
– Convert to polygon approximation (approxPolyDP)
– Discard polygons that aren’t rectangles
– Discard polygons that aren’t the right size

35 Magic?

In [18]: min_width = 20 # in pixels

results = []

centers = []

# Iterate over each contour

for c in contours:

# Contours are jagged lines -- smooth it out using an approximation

a1 = cv2.approxPolyDP(c, 0.01 * cv2.arcLength(c, True), True)
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# This fills in the contour so that it's a rectangle

hull = cv2.convexHull(c)

# Approximate the points again, smoothing out the hull

a2 = cv2.approxPolyDP(hull, 0.01 * cv2.arcLength(hull, True), True)

# We only care about objects that are wider than they are tall, and things wider

# than a particular width. Only keep things that meet that criteria.

_, _, w, h = cv2.boundingRect(a2)

if w < h or w < min_width or len(a2) not in (4, 5):

continue

results.append(a2)

M = cv2.moments(c)

if M["m00"] == 0:

continue

cX = int(M["m10"] / M["m00"])

cY = int(M["m01"] / M["m00"])

# draw the contour and center of the shape on the image

centers.append((cX, cY))

#cv2.putText(image, "center", (cX - 20, cY - 20),

# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)

36 Magic?

In [19]: # Finally, draw out our results

for cnt in centers:

cv2.circle(dst, (cnt[0], cnt[1]), 1, (255, 255, 255), 2)

imshow(dst)

#print(results[0])
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37 Identifying Targets

• Sometimes you need to do more work

– Use ratios to determine which target you’re looking at
– Remove duplicates (inner rectangles)
– Other types of validation

38 Now what?

We have targets... probably should do something with them?

39 Calculate angle/distance to target

• I’m not a math guy, but this sorta works

– Angle works, distance is a bit iffy

• Get the minimum bounding rectangle
• Figure out the horizontal and vertical field of view for your camera

– Look it up online

• Do math to it
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In [20]: # Just do the first one for now

result = results[0]

# Get the height/width

h = float(img.shape[0])

w = float(img.shape[1])

# Define HFOV and VFOV

VFOV = 45.6 # degrees

HFOV = 61.0 # degrees

In [21]: ((cx, cy), (rw, rh), rotation) = cv2.minAreaRect(result)

# These work fairly well

angle = VFOV * cy / h - (VFOV/2.0)

height = HFOV * cx / w - (HFOV/2.0)

print(angle, height)

(33.24999420166016, -11.7234375)

In [22]: # This is magic, but it doesn't really work

target_height = 7.66 # 7' 8"

camera_height = 1.08 # 13"

camera_pitch = 40.0 # What angle is the camera at?

t = (target_height - camera_height)

distance = t/math.tan(math.radians(-angle + camera_pitch))

print(distance)

55.5940910952

40 Now What?

• Send data via NetworkTables

• ... I forgot to write this slide. It’s easy, I promise.

41 Where to run the image processing

• RoboRIO

– RoboRIO is relatively slow, OpenCV eats a lot of CPU

* Hint: Make the images small (320x240)
– Less hardware to deal with
– FIRST intends to install OpenCV by default in 2017
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42 Where to run the image processing

• Driver Station

– Streaming images to OpenCV is possible

* Various latency bugs
– Latency is an issue here
– mDNS problems (hopefully will be resolved in 2017)

43 Where to run the image processing

• Coprocessor (Jetson, Raspberry PI, Nexus 5)

– Lots of teams do this
– More hardware to deal with
– Potentially higher fidelity processing

44 Want code?

• Working OpenCV code integrated with mjpg-streamer

– https://github.com/frc2423/2016/tree/master/OpenCV
– Includes code for storing images onto USB drive during matches
– Don’t let our robot’s performance fool you... :(

• The stuff we did here will be available sometime tonight

– https://github.com/virtuald/frc-imageprocessing-workshop-2016

45 If you want more

• Team 254 gave an excellent presentation at CMP in 2016

– https://goo.gl/mppi4E
– Video/audio: http://www.chiefdelphi.com/forums/showthread.php?t=147568&page=3
– Latency compensation is an excellent technique presented here

46 Resources

• Python 3.5.x

– https://www.python.org/downloads/

• Learn Python

– http://www.codecademy.com/tracks/python

• OpenCV 3.1.0

– http://opencv.org
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• NumPy

– Official site: http://www.numpy.org

47 Resources

• roborio-packages

– https://github.com/robotpy/roborio-packages

• OpenCV for RoboRIO

– https://github.com/robotpy/roborio-opencv

• mjpg-streamer for RoboRIO

– https://github.com/robotpy/mjpg-streamer

48 Resources

• pynetworktables

– source code + examples @ https://github.com/robotpy/pynetworktables

• Edit & debug python code using Eclipse

– Pydev: http://pydev.org/

49 One more thing...

FIRSTwiki: https://firstwiki.github.io

• Publicly editable repository of information related to FIRST Robotics

– Technical topics
– Non-technical
– Team pages

• Add content to your team’s page!

#
Questions?
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