
slides

January 4, 2019

In [23]: # Note: Before starting the slideshow, make sure you run this code as it

provides helper functions that the other slides need...

#

Other than that, you can ignore this content as it won't show up in the slideshow.

#

It's a helper function that makes it easier to show OpenCV images directly

in the notebook environment. When using OpenCV locally, you'll want to use

`cv2.imshow(name, img)` instead.

import numpy as np

import cv2

import math

Notebook setup + convenience functions

%matplotlib inline

import matplotlib.pyplot as plt

def force_bgr(img):

'''Forces image to 3-channel representation if grayscale'''

if len(img.shape) == 2 or img.shape[2] == 1:

return cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

return img

def imshow(*args):

'''Helper function to show images, because matplotlib and OpenCV aren't a perfect match'''

fig = plt.figure()

for i, img in enumerate(args):

fig.add_subplot(1,len(args),i+1)

plt.imshow(cv2.cvtColor(force_bgr(img), cv2.COLOR_BGR2RGB))

def blur(src, radius):

ksize = int(2 * round(radius) + 1)

return cv2.blur(src, (ksize, ksize))

#
Image processing using
##
OpenCV + Python

1

Tim Winters
Created by Dustin Spicuzza (Team 2423/1418)
September 10, 2016
NE FIRST University Day

1 Agenda

• Why OpenCV + Python?
• Image filtering demo
• pynetworktables

2 Image processing

• FRC Teams do it a lot of ways

– NIVision (LabVIEW)
– GRIP (Uses OpenCV as engine)
– OpenCV (various custom stuff)

• We’re going to talk about OpenCV

3 Why OpenCV?

• Originally developed by Intel
• It has thousands of image processing related algorithms and functions available
• Highly optimized and reliable
• Has building blocks that fit together
• Lets you do complex image processing without needing to understand the math
• If you understand the math, it helps!

4 Why OpenCV?

• Bindings for multiple languages

– C/C++
– Java
– Python

• Multiple platforms supported

– Windows
– Linux
– OSX
– Android

• Oh, and it’s FREE!

2

5 What OpenCV Provides

• Image I/O:

– Read/Write images from disk
– Use native OS functionality to interface with cameras

• Image Segmentation

– Edge finding
– Contour detection
– Thresholding

6 What OpenCV Provides

• Face detection
• Motion tracking
• Stereo vision support
• Support for GPU acceleration
• Machine learning operations

– Classifiers
– Neural networks

7 What OpenCV Provides

• Distributed with lots of useful samples that you can use to figure out how OpenCV works

– Face detection
– Edge finding
– Histograms
– Square finder

Lots and lots and lots of stuff. . .

8 Why Python + OpenCV?

• Python is really easy to learn and use

– Simple syntax
– Rapid prototyping

• Most of the compute intensive work is implemented in C/C++

– Python is just glue, realtime operation is possible

• NumPy is awesome

– Manipulating image data is trivial compared to other OpenCV bindings (Java, C++)

#
Time to CODE!
Go to http://goo.gl/nB0NCG

3

9 About this environment

http://goo.gl/nB0NCG

• It’s a Jupyter Notebook (formerly IPython Notebook)

– This slideshow uses Jupyter too!

• It allows you to mix text and executable code in a webpage
• You execute each cell using SHIFT-ENTER

10 Hello World!

• Click the cell with the following text, and press SHIFT-ENTER

In [24]: print("Hello class")

Hello class

11 Next Steps

• Execute the helper code

• The next cell tells you about the images available in your environment

In [25]: %ls images

1ftH3ftD2Angle0Brightness.jpg* 2016-cmp-5.jpg

2013-f0.png 2016-dcmp1.jpg

2013-p0.png 2016-dcmp2.jpg

2013-p1.png 2016-dcmp3.jpg

2014-f0.png 2016-p0.jpg

2016-cmp-0.jpg 2016-p1.jpg

2016-cmp-1.jpg 2016-p2.jpg

2016-cmp-3.jpg 2016-p3.jpg

2016-cmp-4.jpg

12 Hello image!

• Let’s load an image and show it

In [26]: # Change this to load different images

img = cv2.imread('images/2016-cmp-5.jpg')

imshow(img)

4

13 Hello image!

• You can show multiple images next to each other

In [5]: imshow(img, img)

14 OpenCV Image Basics

• Images are stored as multidimensional arrays

5

– Color images have 3 dimensions: height, width, channel

• Each pixel is a number stored in the array
• Numpy array notation allows you to do operations on individual pixels or ranges of pixels

In [6]: img[50, 150, :] # Access a single pixel,

Out[6]: array([4, 21, 0], dtype=uint8)

In [7]: x = img[24:42, 42:100, :] # Access a range of pixels

15 OpenCV Image Basics

• Color is represented by storing combinations of Red, Blue, and Green pixels in separate
channels

– OpenCV uses BGR representation, not RGB

• The amount of each individual color is represented in the individual channel

– ‘dark’ is zero, ‘bright’ is 255

• Combine the channels to represent a color

– Green = RGB(0, 255, 0)
– Deep Pink = RGB(255, 20, 147)

16 OpenCV Image Basics

• Using numpy we can easily fill an image with a single color

In [8]: # define image with height=240, width=320, 3 channels

shape = (240, 320, 3)

pink_img = np.empty(shape, dtype=np.uint8)

Fill every pixel with a single color

pink_img[:] = (147, 20, 255)

imshow(pink_img)

6

17 Practical Example

• 2016 FIRST Stronghold: find targets that are surrounded by retroreflective tape, and shoot
boulders into them

• 2017 FIRST Steamworks: use two targets to align to gear holder on the ship

18 Practical Example

• Finding gray tape at a distance isn’t particularly easy

– Key part of image processing is removing as much non-essential information from im-
age

• We can do better!

19 Retroreflective Tape

• It has a useful property -- it reflects light directly back at the source
• What can we do with this property?

• Shine bright LEDs at the target and the tape reflects that color back to the camera

– Many teams have found that green light works best

• Reduce exposure of camera so only bright light sources are seen

7

20 A note about exposure

• Webcams support setting the exposure manually (yay)
• Some cameras only allow particular exposure settings

– The lifecam is one of them

• OpenCV has bugs, it doesn’t set the exposure properly
• Here’s a workaround that works on linux:

v4l2-ctl -d /dev/video0 -c exposure_auto=1 -c exposure_absolute=10

21 Retroreflective Tape

In [9]: img1 = cv2.imread('images/2016-p0.jpg')

img2 = cv2.imread('images/2016-p1.jpg')

imshow(img1)

imshow(img2)

8

22 Practical Example

Processing steps to find targets:

• Isolate the green portions of the image
• Analyze the green portions to determine targets

Note: There are a lot of ways to go about this, I’m just showing you one way

23 Blurring the Image

• Get rid of small artifacts (noise)
• Makes the target a little more complete

– Easier for thresholding and contour finding

In [10]: blurred = blur(img2, 2)

imshow(blurred)

9

24 Identify the green

• What is “green” anyways?

– This is green. This is also green.

• To a computer, green is really a range of colors
• An object’s color changes depending on lighting conditions
• We can transform the image to identify colors independent of lighting conditions

25 Identify the green

• Convert the image from RGB to HSV

– Hue: the color
– Saturation: Colorfulness
– Value: Brightness

In [11]: hsv = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)

imshow(img2)

imshow(hsv)

10

26 Identify the green

That doesn’t show why HSV is useful. Let’s look at the individual channels instead.

11

In [12]: h, s, v = cv2.split(hsv)

imshow(h, s, v)

27 Identify the green

• Green is a range of values present in the image
• ‘Threshold’ the image to get rid of the colors that we don’t care about
• Lots of ways to do this

– Manually specify values
– Automated methods

28 Identify the green

cv2.inRange can threshold an image given two ranges of pixels. * Wanted values are converted to
255 * Unwanted values are now 0

In [13]: lower = np.array([0, 145, 80])

upper = np.array([255, 255, 255])

filtered = cv2.inRange(hsv, lower, upper)

imshow(img2, filtered)

12

29 Identify the green

Sometimes, you end up with holes in your output

In [14]: img3 = cv2.imread('images/2013-f0.png')

hsv3 = cv2.cvtColor(img3, cv2.COLOR_BGR2HSV)

Thresholds are different because different camera/lighting

lower3 = np.array([30, 188, 16])

upper3 = np.array([75, 255, 255])

filtered3 = cv2.inRange(hsv3, lower3, upper3)

imshow(filtered3)

30 Identify the green

• We can use a morphological operation to fill in the holes

– Various types of morphology operations available

• They modify a pixel based on the values of its neighboring pixels

– The one we use to fill in holes is a “closing” operation

In [15]: kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2), anchor=(1,1))

output = cv2.morphologyEx(filtered3, cv2.MORPH_CLOSE, kernel,

iterations=3)

imshow(output)

13

31 Identifying Targets

Use findContours() to find regions of interest * Returns a list of points bounding each separate
blob in the image (called a contour) * Also returns a hierarchy so you can determine whether a
contour is entirely inside another contour

In [16]: image, contours, hierarchy = cv2.findContours(output,

cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

32 Identifying Targets

If you want to see what it found, you can draw the found contours.

In [17]: dst = np.zeros(shape=img3.shape, dtype=img3.dtype)

cv2.drawContours(dst, contours, -1, (0, 255, 255), 1)

imshow(dst)

#print(contours[0])

14

33 Identifying Targets

• As you can see, contours aren’t the whole story

34 Identifying Targets

• Contour analysis

– Discard non-convex contours
– Convert to polygon approximation (approxPolyDP)
– Discard polygons that aren’t rectangles
– Discard polygons that aren’t the right size

35 Magic?

In [18]: min_width = 20 # in pixels

results = []

centers = []

Iterate over each contour

for c in contours:

Contours are jagged lines -- smooth it out using an approximation

a1 = cv2.approxPolyDP(c, 0.01 * cv2.arcLength(c, True), True)

15

This fills in the contour so that it's a rectangle

hull = cv2.convexHull(c)

Approximate the points again, smoothing out the hull

a2 = cv2.approxPolyDP(hull, 0.01 * cv2.arcLength(hull, True), True)

We only care about objects that are wider than they are tall, and things wider

than a particular width. Only keep things that meet that criteria.

_, _, w, h = cv2.boundingRect(a2)

if w < h or w < min_width or len(a2) not in (4, 5):

continue

results.append(a2)

M = cv2.moments(c)

if M["m00"] == 0:

continue

cX = int(M["m10"] / M["m00"])

cY = int(M["m01"] / M["m00"])

draw the contour and center of the shape on the image

centers.append((cX, cY))

#cv2.putText(image, "center", (cX - 20, cY - 20),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)

36 Magic?

In [19]: # Finally, draw out our results

for cnt in centers:

cv2.circle(dst, (cnt[0], cnt[1]), 1, (255, 255, 255), 2)

imshow(dst)

#print(results[0])

16

37 Identifying Targets

• Sometimes you need to do more work

– Use ratios to determine which target you’re looking at
– Remove duplicates (inner rectangles)
– Other types of validation

38 Now what?

We have targets... probably should do something with them?

39 Calculate angle/distance to target

• I’m not a math guy, but this sorta works

– Angle works, distance is a bit iffy

• Get the minimum bounding rectangle
• Figure out the horizontal and vertical field of view for your camera

– Look it up online

• Do math to it

17

In [20]: # Just do the first one for now

result = results[0]

Get the height/width

h = float(img.shape[0])

w = float(img.shape[1])

Define HFOV and VFOV

VFOV = 45.6 # degrees

HFOV = 61.0 # degrees

In [21]: ((cx, cy), (rw, rh), rotation) = cv2.minAreaRect(result)

These work fairly well

angle = VFOV * cy / h - (VFOV/2.0)

height = HFOV * cx / w - (HFOV/2.0)

print(angle, height)

(33.24999420166016, -11.7234375)

In [22]: # This is magic, but it doesn't really work

target_height = 7.66 # 7' 8"

camera_height = 1.08 # 13"

camera_pitch = 40.0 # What angle is the camera at?

t = (target_height - camera_height)

distance = t/math.tan(math.radians(-angle + camera_pitch))

print(distance)

55.5940910952

40 Now What?

• Send data via NetworkTables

• ... I forgot to write this slide. It’s easy, I promise.

41 Where to run the image processing

• RoboRIO

– RoboRIO is relatively slow, OpenCV eats a lot of CPU

* Hint: Make the images small (320x240)
– Less hardware to deal with
– FIRST intends to install OpenCV by default in 2017

18

42 Where to run the image processing

• Driver Station

– Streaming images to OpenCV is possible

* Various latency bugs
– Latency is an issue here
– mDNS problems (hopefully will be resolved in 2017)

43 Where to run the image processing

• Coprocessor (Jetson, Raspberry PI, Nexus 5)

– Lots of teams do this
– More hardware to deal with
– Potentially higher fidelity processing

44 Want code?

• Working OpenCV code integrated with mjpg-streamer

– https://github.com/frc2423/2016/tree/master/OpenCV
– Includes code for storing images onto USB drive during matches
– Don’t let our robot’s performance fool you... :(

• The stuff we did here will be available sometime tonight

– https://github.com/virtuald/frc-imageprocessing-workshop-2016

45 If you want more

• Team 254 gave an excellent presentation at CMP in 2016

– https://goo.gl/mppi4E
– Video/audio: http://www.chiefdelphi.com/forums/showthread.php?t=147568&page=3
– Latency compensation is an excellent technique presented here

46 Resources

• Python 3.5.x

– https://www.python.org/downloads/

• Learn Python

– http://www.codecademy.com/tracks/python

• OpenCV 3.1.0

– http://opencv.org

19

• NumPy

– Official site: http://www.numpy.org

47 Resources

• roborio-packages

– https://github.com/robotpy/roborio-packages

• OpenCV for RoboRIO

– https://github.com/robotpy/roborio-opencv

• mjpg-streamer for RoboRIO

– https://github.com/robotpy/mjpg-streamer

48 Resources

• pynetworktables

– source code + examples @ https://github.com/robotpy/pynetworktables

• Edit & debug python code using Eclipse

– Pydev: http://pydev.org/

49 One more thing...

FIRSTwiki: https://firstwiki.github.io

• Publicly editable repository of information related to FIRST Robotics

– Technical topics
– Non-technical
– Team pages

• Add content to your team’s page!

#
Questions?

20

	Agenda
	Image processing
	Why OpenCV?
	Why OpenCV?
	What OpenCV Provides
	What OpenCV Provides
	What OpenCV Provides
	Why Python + OpenCV?
	About this environment
	Hello World!
	Next Steps
	Hello image!
	Hello image!
	OpenCV Image Basics
	OpenCV Image Basics
	OpenCV Image Basics
	Practical Example
	Practical Example
	Retroreflective Tape
	A note about exposure
	Retroreflective Tape
	Practical Example
	Blurring the Image
	Identify the green
	Identify the green
	Identify the green
	Identify the green
	Identify the green
	Identify the green
	Identify the green
	Identifying Targets
	Identifying Targets
	Identifying Targets
	Identifying Targets
	Magic?
	Magic?
	Identifying Targets
	Now what?
	Calculate angle/distance to target
	Now What?
	Where to run the image processing
	Where to run the image processing
	Where to run the image processing
	Want code?
	If you want more
	Resources
	Resources
	Resources
	One more thing...

